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ABSTRACT

Two notions of dependency satisfaction, consistency and completeness, are
introduced. Consistency is the natural generalization of weak-instance satisfaction
and seems appropriate when only cquality-generating dependencies are given, but
disagrees with the standard notion in the presence of tuple-gencrating dependen-
cies. Completeness is bascd on the intuitive scmantics of iuple-gencerating depen-
dencies but differs from the standard notion for equality-generating dependencies.
It is argued that ncither approach is the correct one¢, but rather that they
correspond to different policies on constraint cnforcement, and cach onc is
appropriate in different circumstances. Consistency and completencess of a state are
characterized in terms of the tablcau associated with the state and in terms of logi-
cal properties of a set of first-order sentences associated with the state. A close rela-
tion between the problems of testing for consistency and completeness and of test-
ing implication of dependencies is cstablished. tcading to lower and upper bounds
for the complexity of consistency and completeness. The possibility of formalizing
dependency satisfaction without using a universal rclation scheme is cxamined.
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. Notions of Dependency Satisfaction
Marc H. Graham
' School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332
Alberto O. Mendelzon
Computer Systems Research Group
University of Toronto
Toronto, Canada MSS 1A4
Moshe Y. Vardit
Computer Science Department
Stanford University
Stanford, California 94305
1. Introduction
. The starting point of depcndency theory is the notion that certain database states are legal, or
correct, and others are not. The class of formal statements called dependencies is studied as a
. language for the specification of the allowable states. It is therefore of great importance to have a
precise notion of when a database state satisfies a set of dependencies.

When the database state consists of a singlc rclation, dependency theory does provide an ade-
quate notion of satisfaction. Dependencies are restated as first order sentences on a language with a
single predicate letter, and a relation satisfies a set of dependencies if it provides a model for the
associated set of sentences. The gencralization of this notion to multi-relation databases has until
recently followed one of two paths. In the first approach, a dependency is said to hold in a particu-
lar relation, so inter-relation dependencies arc climinated by definition. The second approach con-
venicntly assumes that the databasc consists of the sct of projections of some universal relation;

$ questions of satisfaction are dcalt with by examining this universal relation.

More recent work [H, V] has pointed out the limitations of these approaches and proposcd a
more appealing one. A databasc state is said to satisfy a sct of functional dependencies if there
exists a universal relation 7 such that / satisfics the dependencics and is a containing instance, that

* is, the projections of 7 on the given relation schemes contain cach of the given relations. Any such
. mcd by a Weizmann Post-Doctoral Fellowship and AFOSR m l.\ dress: IBM
Research Laboratory, 5600 Cottle Rd., San Jose CA 95193.
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I is called a weak instance for thc database state; this notion is often called weak satisfaction.
Detailed justification and discussioa of this approach can be found in [G,H,V]. It is worth noting
that, when only functional dependencics are present, a single-relation database is weakly satisfying
preciscly when it is satisfying in the standard scnse.

Given the useful properties of weak satisfaction [G,M,S.Y], it is tempting to generalize it
directly to other kinds of dependencies by saying that a database state satisfics a sct of (functional,
multivalued, join, tcmplate, etc.) dependencies if there exists a containing instance for it that
satisfies the dependencies. In this case we shall say that the state is consistent with the dependen-
cies.

Our first objection to this proposal is that weak satisfaction now becomes different from stan-
dard satisfaction for single-relation databases. For example, if all the dependencies are total tuple-
gencrating dependencies (such as multivalued and join dependencies), then any database state
satisfies any sct of dependencies. In particular, every single relation can be made into a weak
instance for itself by adding a finite number of tuples to it [MMS,BV1].

A second, related, objection is that this proposal does not seem to capture the intuitive seman-
tics of tuple-generating dependencies in multi-relation databases either. Consider for example the
following database.

Example 1:
R 1 Ry
| Student  Course Course Room Hour
Jack CS378 CS378 B2ls Mo

CS378 B2y Wio
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Ry

Student Room  Hour

T N v

Jack B21s Mo

and dependencies {SH—>R, RH—~C, C—*S |RH}.

£ g it Kt

The multivalued dependency C—>S | RH is intended to express the fact that a student is
¢ associated with every (r,h) pair such that some course that the student takes meets at room r at
time A. This constraint is intuitively violated in the example, since Jack is not associated with room
J B215 on Wednesdays at 10 although he is taking CS378.

An alternative approach to defining satisfaction is through the notion of complete states, intro-

duced for a different purpose in [M]. We say that a state is complete if it contains each tuple that

' appears in the projections of every weak instance for the state. The state in Example 1 is not com-

plete, because every weak instance for it contains the sub-tuple <Jack,B213,W 10>, which does not

appear in R;. When only tuple-generating dependencies are given, completeness coincides with the
standard notion of satisfaction on singlc-relation databases.

An objection to the completeness criterion is that it seems unnatural for cquality-generating
dependencies such as functional dependencics. Consider the following example '

2 Example 2:

R, R,

é Student  Course Course  Room Hour

) “Accession Tor
| Jack  CS378 CS378  BAS M0 ot R
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with the only dependency C—RH.

This is not a complete state, since the sub-tuple <Jack,B215,M 10> will be forced by C —RH
to appear in every weak instance, but it does not appear in R3. However, it is hard to argue that
this state violates the C—>RH dependency, which simply requires that each course be associated

L O ek 1

with a unique room and time,

In sum, we have described two notions of dependency satisfaction, consistency and complete-
ness. Consistency is the natural gencralization of weak satisfaction and scems appropriate when only
4 equality-generating dependencies are given, but disagrees with the standard notion in the presence
d of tuple-generating dependencies. Completeness is based on the intuitive semantics of tuple-

generating dependencies but appears unnatural for equality-generating dependencies. It is our
3 thesis that neither approach is the correct one, but rather that they correspond to different policies

.0 il e

on constraint enforcement, and each one is appropriate in different circumstances.

After introducing definitions and notation in Section 2, Section 3 presents the notions of con-

sistency and completeness. We show how to construct for a databasc state p two sets of first order

sentences, C,, and K, such that p is consistent with the given dependencies if and only if Cois
; finitely satisfiable and p is complete with respect to the given dependencies if and only if K p IS
finitely satisfiable, In Scction 4, we characterize consistency and completeness in terms of the chase

{ of the associated tablcaux [M]. When all dependencies are total, our results provide a decision pro-
! cedure for testing consistency and completeness of a state. However, we show that testing whether a
m is inconsistent with a typed cquality-gencrating dependency and testing whether a state is
incomplete with respect to a join dependency are both NP-complete problems. Furthermore, the
‘ general problems of testing consistency and completeness under full dependencics arc shown to be
complete in exponential time. In Section 5, we study the decision problem for consistency and
completeness when embedded dependencics are present. By relating consistency and completeness
to the well-studied question of dependency implication, we show that both are undecidable in the

: general casc. Finally, in Scction 6 we examine the construction of scts of sentences similar to C,
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and K, but without using a predicate that stands for the universal relation scheme. We show that
] this can be done when the database scheme is weakly cover-cmbedding, a necessary condition for
% independence of the database scheme [GY].

% Our results deal with untyped relations and dependencics, that is, a valuc may appear in
! different columns of a relation. However, all of the results, except for Theorems 8, 9 and 15, can
:i be specialized to the typed case.

g‘ 2. Definitions and Notation

2.1. Relations, database states and tableaux

We fix a finite set of attributes called the universe, U = {4,, .. ., A,}. Each attributc 4; has

o g g
AL, S TG

an associated infinite set called its domain and denoted dom(4;). Since we deal with untyped data-
bases, we shall let all the domains be the same, say the integers. A relation scheme R is a subset of

U. A database scheme R = {R,, ..., R;} is a collection of relation schemes such that the union

PSR

of the R’sis U. A mpfe defined on fclation scheme R is a function that maps cach attribute in R

s to a value. The value can be either an integer or a variable taken from an infinite set of uninter-
?5% preted symbols. A tuple can be visualized as a row of table where the columns are labeled by the
: attributes. A tableau on R is a finite set of tuples defined on R. If risatupleon R and X is a
" subset of R, ([X) denotes the restriction of £ to X. If +(4) is an integer for every 4 in X, we say
4 that ¢ is total on X. A relation on R is a tablcau on R such that every tuple is total on R. A rela-

e

tion on U is called a universal relation.

For r a tableau on R and X a subset of R ,the projection of r on X is

-«
wx(r) = {4[X]]| t€r and ¢ is total on X }.
% ‘; Note that our definition of projection corresponds to what is sometimes called “total projection” in
A the literature, so the projection of any tablcau on any set of attributes is always a relation. When
g R={Ry,...,R;}, we writc wg(r) for Kwp,(r) ..., ;g (rD.
l“
-f A state of a database scheme R is a function p that maps every relation scheme R in R to a
R
! relation on R. We write
N p=Lr, > =<p(Ry). -+ - p(Ry
%
"3

e e,
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We associate with each statc p of R a tableau T, defined on the universe. T, contains
cxactly one tuple for each tuple in each relation of p. The tuple r corresponding to tuple ¢ in
p(R) is constructed by letting r[R])=¢[R] and filling the rest of r with distinct variables that appear
nowhere else in T,

Example 3: Let R={AB,BCD,AD}, and p is the state below.

p(4B) p(BCD) p(4D)
A B B C D 14 D
1 2 S 8 1 9
1 3 4 7
'l‘henT,k:

4 B C D

1 2 b b

1 3 b b

b 2 S5 8

b¢ 4

I b by 9

A waluation v for a tableau R is a mapping from the symbols in the tableau into variables
and constants such that v(c)=c¢ for cvery constant ¢ that appears in T".

22. Dependencies
Following [BV1], we use tableaux to represent implicationat dependencies. A template depen-

dency (td) is a pair d = <T,w>, where T is a t* 'cau contair* ; no constants and w is a tuple con-
tining no constants,. We say d is fill or total it v' } ap,. cass in T for cvery attribute 4. Other-
wise, d is sald to be embedded or partial. A relation [ satisfics d if for every valuation v such that
w(T)C 1, there exists an cxtension v’ of v to all the symbols of w such that v'(w)€/. Informally, a
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template dependency says that if certain tuples appear in /, then some other tuple must also
appear. ‘Template dependencics are a special casc-of the tuple-generating dependencies (1gd’s), where
a set of tuples is allowed instcad of the single tuple w. For total dependencies, one can assume
without loss of generality that a single tuple appears on the right hand side [BV1]; thus total tem-
plate dependencies are no less general than total tuple-generating dependencies. Join dependencies
[ABURI] are a specia case of total td's. An equality-generating dependency (egd) is a pair
d =<T (ay,ay)>, where T is a tableau containing no constants, and a;,a; are variables that appcar
in T for some A. A tableau S satisfies an egd d = <7 (ay.a;)> if for every valuation v such that

v(T)CS, v(ay) = v(ay). Functional dependencies are a special case of egd’s.

Egd’s also act like tgd’s, since by generating ncw equalities they generate new tuples. This
action can be simulated by total td’s. Beeri and Vardi [BV1, BV2| show how to construct, given a
set D of dependencies, a set D of tgd’s that has the following properties:

(1) D is obtained from D by replacing each egd by some td's.

- @ DED.

(3) Letd beatgd. If Dd then D Ed.
We call D the egd-free version of D.

3. Consistency and Complcteness

In this section we define two propertics of a database state with respect to a sét of dependen-
cies, consistency and completeness, which we consider to be two different aspects of dependency
satisfaction. We characterize thesc properties in terms of the satisfiability of two first-order theories
associated with the state,

Let us fix a database scheme R={R),...,R,}. Let WEAK(D,p) be the set of all weak
instances for a database state p under a set of dependencics D. That is, WEAK(D,p) is the sct of all
universal relations satisfying 2 such that their projections contain cach relation in p. Say a state p
is consistent with set of dependencies D if WEAK(D ,p)2@. The co}npletion of a state p, pt, is
defined by

+

[ {ma(1)},

= N_
T1€WrAK(D p)

where the intersection is taken relation-wisc. Note that pCp* for any p. Say a statc p is complcte
with respect to set of dependencics D if p cquals its completion, thatis, p = p*.
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Intuitively, a state p is consistent if there is some way of adding tuples to relations of p that
will transform it into the set of projections of some satisfying universal instance. If p is consistent,
then there are many different sets of tuples which can be added to it to demonstrate its consistency.
However, there arc certain tuples which will have to appear in every such extension of p. If all
these necessary tuples arc already in p to begin with, then we say p is complete. Note that the
definition of completeness is based on the egd-free version of D, D. This is done to allow con-
sistency and completeness to be independent notions. While WEAK(D,p) could be empty (for
inconsistent p), WEAK(D,p) is never empty. We will show later that, for consistent states, it does
not matter whether D or D is used.

Several workers [GM,Ni] have advocated the use of first order logic to express dependencics
and other constraints. As we explaincd in the introduction, their approach does not casily generalize
to dependencies in multi-relation databases. Given a dependency statement such as X—Y in a
database scheme where X and Y may not appear together in one relation scheme, or may appear
in more than one, it is not clear how satisfaction of the dependency can be formalized as satisfac-

tion of some first order sentence.

The notions of satisfaction proposed above do provide a means of using first order logic to
formalize dependencies. However, a rather drastic shift in point of view is required. It is no longer
possible to write down a sentence for cach dependency and ask whether the database provides a
model for each of these sentences. Consider for example the notion of consistency as satisfaction,
and let dy = A—C, dy = B—C, with the databasc scheme {AB,BC}. Let p(AB) = <00,01> and
p(BC) =<01,12>. It is easy to sec that p is consistent with d; and with d,, but it is not consistent
with {d},d>}.

Our approach is to construct two sets of sentences, Cp and K, for each state p. We will show
that p is consistent exactly when C, is finitely satisfiable and that p is complete exactly when K, is
finitcly satisfiable. Thus we reduce both notions of satisfaction to the standard logical notion of
finitc satisfiability. Notc that in this approach consistency and completencss of a state are not first

order notions; they are statements about first order theorics rather than statements in these theorics.

Before constructing the sets of sentences Cp and K. we fix a lincar ordering on the elements
of the universe U. We now write U as the sequence <4,,.....4,>. Each relation scheme R in R
may be written as the sequence <4;,. . . . . 4; >, where ii<iy for j<k.

C p and K p cach contain two wubscts of scatences, the database scheme axioms and the state

axioms. The scheme axioms depend only on the databasc scheme R and the set of dependencies D ;

.........
."w‘- Y

PASAACR A 'L' LG

.".",'-. Yo
NN Py )




 HATNG 2R

-

N

oW B g Y

AR A

W, §,08,.9, ‘;
et el

5.

e X

W 3 e TN JUL TN % N (VR TR TR L LT UE .
e et L B DAL R PR B IR SO ML RO S SIS ) RO A U B g o e AR AT AR A A

the statc axioms depend on the state p.

The scheme axioms of both C, and K, include the containing instance axioms. For each
rclation scheme R, therc is one containing instance axiom that says that cvery tuple in the R-
relation of the state must be the projection on R of some tuple of the universal relation. In other
words, the containing instance axioms asscrt the existence of a containing instance for the state.

Formally, for each relation scheme R = {4, .... 4. > inR, there is a sentence of the form

Yag3y(R(ay....a.)* U(¥0.a1.91.028m.Ym))

where a is the sequence a),25 . .., a, and y is the sequence <y, . . . . Y», NO a; appears in y and
no symbol appears more than once in y. The scquence y; is of length i;,1—(i; +1), where ig=0

and im+1=n+1-

The scheme axioms of Cp also include the dependency axioms, which are just the dependen-
cies in D encoded as implicational sentences as described by Fagin [F]. K, also contains depen-

dency axioms, but in this case we use the egd-free version of D, D, rather than D itself.

The state axioms of both C, and K p contain the state p encoded as a sct of quantifier-free
sentences. For each tuple <ay, . ..,a,> in p(R), we include the sentence R(ay, ... .a,) where

the a;’s are constants.

Finally, the state axioms of Cp include the distinctness axioms, and those of K p include the
completeness axioms. The distinctness axioms are the set of inequalities ¢ #d, where ¢ and 4 are
distinct constants appcaring in p. The completeness axioms contain, for cach tuple <ay. .. .,a,>

such that cach a; appcars in p but the tuple itself docs not 7 ppear in p(R), the sentence

Yy U(yay - .. .Gn.Ym))

where y is constructed as in the containing instance axioms. Intuitively, the completencss axioms

say that only tuples appearing in p(R ) can be in the projection of the universal relation on R.

Example 4: We construct C,, and K, for the state shown in Example 1. U is the sequence
<S,C.R,H>;, R contains the schemes Ry =4<S,C>, Ry=<C.R.H>, and R3;=<S,R.H>. The

dependencies are the functional dependencies SH—R, RH—C, and thc multivalued dependency
C—*S|RH.




o Containing Instance Axioms:

Y s.c 3.k (Ry(s.c)— U(s,c,r,h))
Y ¢,r.h As(Roe,rh)>U(s.c,r,h))
Y s,r,h 3 ¢ (Rys,r,h)—>U(s.c,r.h))
o Dependencies:
(Y sicicahynr) (Usy.err h)nU sy, ca.r2,0) = ri=rp)
(Y sisyc1e:hr) (U sy e, AN U (sp00,11,8) = €1=¢2)
(Y 515261712 ko XU (sl,cl,rl,hl)l\Q (s2,¢1.r2,0) = Ulsy.c,rh)

o Egd-free Dependency Axioms:

(¥ sysacicacshhanirl U (sy,e1.n AU (51,69,r2, -NU (52,63,71,h0)
= Ulszca.ra,h)))

(Y sisasscrcahanir) (UGsy.en i hNU (sy,02,r, AU (3,61, 72, k)
= U(ss.carah)

(Y sisac1n1rahyhp XU (spe1,r ADAU (53,0170, h0) = Usyuerrihy))

etc.

o State axioms:
Ry(Jack,CS378)
R,(CS378,B215,M 10)

RACS378,8213,W10)

Ry(Jack,B215,M 10)

YRV

e,
e T ]
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Y o Distinctness axioms:
‘ B215% B213
'i
li} M10% W10
)
~
) Jack#CS1378
Jack#B215
etc.
i e Completeness axioms:
kY
'_ ' For R;:
% Y r.h U(CS318,CS318,r,k)
Y r.h mU(B215,CS3718,r,h)
etc.
% For R,
»
i, Y s " U(s,CS378,8213,M 10)
* Y s 2U(s,CS378,8215,W10)
-
. etc.
. For Ry

Y ¢ U(Jack.c,B213,W10)

RS A

ctc.

C, consists of the containing instance axioms, the dependency axioms, the state axioms and

P

the distinctness axioms. K, consists of the containing instance axioms, the cgd-free dependency

* axioms, the state axioms and the completeness axioms.

s
Tl

Before proceeding to our results, we introduce some basic definitions and notation of model

theory. A structure for a language /. consists of a domain of clements and an interpretation of cach

predicate and constant of L. A structurc with a finitc domain is finite. If M is a structurc with

L WA

[
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domain A4 and P is a k-ary predicate symbol, then M(P)C A* is the interpretation of P in M,

and if ¢ is a constant, M(c) € 4 is the interpretation of ¢ in M.

A structure M for a language L is a model of a sct of sentences I if for every 6 € Z, o is
true in M, written M | ¢ (we assume the reader to be familiar with the notion of truth in a

model). A set of sentences is finitely satisfiable if it has a finite modcl.

The next two theorems establish that finitc satisfiability of C, and K, arc identical respec-

tively to consistency and completeness of p with respect to D.
Theorem 1: C,, is finitcly satisfiable if and only if p is consistent with D.

Proof: If p is consistent, it is clear that for every 7 € WEAK(D,p) the structure M with
M(R) = p(R) and M(U) = [ is a finite modcl of C,. For the converse, let M be a finitc model of
C,. For each pair of constants ¢, d in the language of C,, we have M | c#d, so M(c)=M(d).
Thus we can assume without loss of gencrality that constants are interprcted as themsclves, ie.
M(c) = c. It is casy to verify that M(U) is a containing instance for p that satisfics D. That is,
M(U) € weak(D ,p), so p is consistent with D. O

Theorem 2: K, is finitely satisfiable if and only if p is complete with respect to D.

Proof: Supposc X, is satisfiable with a finite model M. We claim that K, has a finitc model
M’ where no two constants have the same interpretation. To construct M', we replace each cle-
ment of the domain of M with many distinct copies of that clement. For example, if
<a,b,e> €M(R), then M'(R) would contain tuples <ay,by.c1?, <apbi.c, <anbacy, cte. If two
constants arc interpreted as the same clement in M, they would be interpreted as two distinct copies
of that element in M. Since X P does not have equality in it, M’ is still a model of K p- Thus,
without loss of gencraity, we can assume that in M’ constants are interpreted as themselves, so
M'(U) € weak(D ,p). By the completeness axioms, wp(/) does not contain any tuple constructed
from valucs appcaring in p but not itself appcaring in p. Hence, p* cannot contain any such tuple,

so p is complete.

For the converse, suppose that p is complete. Consider the set S of all tuples 1 on some rela-
tion scheme R such that ¢ is constructed from valucs appearing in p but ¢ is not in p. Since p is
complete, if ¢ is an R-tuple in S, then there is a universal relation 7, € wiak(D,p) such that
t€ngp(l,). We usc now the direct product construction [F] to produce a universal relation

! GWIMK(ﬁ.p) such that if 7 is an R -tple fromn S, thea ¢ €qx (7). 1 is the divect product :)c(sl"

constructed as follows. Let S = {1, ...,1,}. The values in 7 are m-sequences € =<cp . o0 G

...................

.......
''''''''''
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X of constants from p, where we identify the m-sequence <c.c, - - - ,¢> with the constant ¢. Now a
" R tuple s is in / if and only if the tuple s;, which is obtained from s by projecting cach m-scquence
' , on its i-th component, is in /,. It is straightforward to verify that / is a containing instance for p.
} ) Furthermore, since dependencies are preserved under direct product [F], 7 must satisfy D. The
i finite structure M with M(R) = p(R) for cach R and M(U) =  is a model of K,,. O

3

¥ 4. Testing Satisfaction under Full Dependencies

: j In this section we show that both consistency and completeness of a state can be tested by
chasing the associated tablcau, when embedded dependencies are not present. Thus the upper
Ef bounds on complexity known for chasing tableaux under various special kinds of full dependencies
3 apply also to testing satisfaction. Throughout this section, D is a set of full dependencies. We start
. by defining the chase of a tableau under full dependencies and establishing preliminary results
, about chasing with the egd-free version of D.

‘ The chase of a tableau T with respect to a set of dependencies D, denoted by CHASEp(T), is
. the result of applying the following two transformation rules exhaustively to 7.

N Td-rule:

If<S.w>isatdin D, and there exists a valuation v such that v(S)CT, add v(w) to the rows
,_'3. of T.

: Egd-rule:

' ; ~ Suppose <S,(ay,ay)> is an egd in D, and there exists a valuation v such that v(S)CT, and
: v(ay),v(ay) arc not both constants. If only one of v(a;),v(a;) is a constant, rename all
2 occurrcnces of the other one in 7 to that constant. If both are variables, rename all
- occurrences of the higher numbered variable to the lower numbered one.

~‘:‘ Given a tableau T, and set of dependencies D, we will write

>

;:' Tp" = CliAsEp(T,)

% and

"}: . To* = CHASEG(T )

where 1 is the egd-frec version of D.

We nced some preliminary results before characterizing consistent states.

"l P Y - o LML N T T T e T T T T T L
o A O i S O v e R Rt e e e T e

...................




to a constant not appearing in ¢. Since v(T,)EWEAK(D p), t€wp(v(T,)). By construction of v,
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3 Lemma 1: For each / EWEAK(Dp), there is a valuation v such that v(T;)C /.

B Proof: By induction on the computation of T. O

‘.‘.;'

.i . - = ]

it Lemma 2: For any consistent state p, I “Q‘ D'){n(l )} = wa(T,).

3 Proof: Let IEWEAK(D,p). Let v be the valuation of the previous lemma, v(T; )C/. Then

% wx(Tp)C wa(A(T)NC wall).

&

R

) H 3 1 -
It follows that n(T;) c , ewﬂw.’){n(l )}. For the other inclusion, let ¢ be a tuple in the R;

EE component of 16 N ‘){1.(1)}. Let v be an injective valuation for T, that maps cach variable

this implies that ¢ must come from some R, -total tple of T, s0 {€wg (Tp). O

58

G Consistency and completencss of a state can be characterized in terms of the associated
= tableau T, as follows.

5

i

Theorem 3: The following are equivalent.
(a) p is consistent with D.
(b) T, satisfies D.

Proof:
(a) implies (b): Let / GWEAK(D ), and et v be the valuation of Lemma 1. Suppose that 7, does
not satisfy some d€D. d cannot be a td, since in that case a td-rule is applicable to T,',. Thus d
p must be an egd <S.(2;,a2)>, and there is a valuation v’ such that v'(S)C T,’, and v'(a))#v'(a).
£ Both v'(a;) and v'(a;) must be constants, otherwise an egd-rule is applicable to T,. But now
‘ v(v(S)CT and v(v'{a)*v(v'(ay)), so I docs not satisfy D - a contradiction.
(b) implics (a): Let v be an injective valuation for T, that map cach variable to a constant not

RNERE

i

appearing in p. Then v(T,) satisfics D and it is a containing instance for p. Thus
WEAK(D p)%8. O

f.A We need two more preliminary results before characterizing complcte states.
PV Lemma 3: For cach ] EWEAK(D.p), there is a valuation v such that v(T,} )C /.
Proof: By induction on the computation of 7,/ . O

The next lemma shows that the completion of a state can be obtained from T; .

PR AP S TN NN g .
) c~0.‘ .'-~.‘.. RS \'.\._“-'.-f
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Lemma 4: For any state p, p* = wa(T").
Proof: Let JEWEAK(D p). Let v be the valuation of the previous lemma, v(T) )C/. Then

(T )G wg (T} NC wall).

It follows that #x(7," ) C p*. For the other inclusion, let ¢ be a tuple in the R;-~component of p*.
Let v be an injective valuation for T,,+ that maps each variable to a constant not appcaring in .
Since w(T, YEWEAK(D .p), t€wx v(T, ). By construction of v, this implies that ¢ must come

from some R;-total tuple of 7", so (€wx (7). O

Theorem 4: The following are equivalent.
(a) p is complete with respect to D.
(b) p is complete with respect to D.
© p=wlTS).
Proof: The equivalence of (a) and (b) is immediate from the fact that D=D. The
equivalence of (a) and (c) follows directly from Lemma 4. O

We have defined completeness and consistency to be independent notions. However, it is
intcresting to note that, for consistent states, the notion of completeness can be simplificd as fol-

lows.

Theorem S: For state p consistent with dependencies D, the following arc cquivalent:
(a) p is complete with respect to D.
(b) p = wp(T}p).
©p= , EWQ {wr(7)}.

K(D.0)
Proof:
(b) cquivalent to (c): Follows from l.cmma 2.
(a) cquivalent to (b): By Theorem 2, p is complete wit D) iff if p = we(7,"). We claim that
wn(T;) = w..(.T,,*) for consistent statcs. Since p is consistent, by Theorem 1, T, satisfies . By
property (2) of D, we also have that 'I'; satisfics D. Hence, by [.emma 3, there is a valuation v
such that v(T) C T:,. Consequently, ay(T, ) C myl T:,). For the other inclusion, let ¢ be a
tuple in the R;-component of mg(’l’,', ). Let v be amap for Ty that sends distinet constanis (o dis:

tinct variables. Lot 7°=v(T ). and Iet s be a tuple such that s[R;]=v(r) and the 1est of 5 consists

of distinct new variables. We claim that D) <7 s>. Indeed, there is a tuple ¢ in T,', such that

7
Caf e B
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hHiR;)=1. Therefore, there is a tuple sy in ClASEY(T) such that s1[R;]=s[R;). By the results in
[BV1], it follows that D [E<T.s>. But then also D E<T,s>, by property (3) of D. Thus, by the
results in [BV1], there is a tuple s; in CHASER(T) such that s{R;]=s[Ri]. It follows that
t€xy(TS). O

Corollary 1: The following are equivalent:
(a) p is consistent and complete with respect to D.
(b) T, satisfies D and p = wg(Tp).
©@p=, M {x}.0O

TEWEAK(D ,p)
The next thcorem relates consistency and completeness to standard satisfaction for single rela-
tions.
Theorem 6: For R = {U}, p(U) satisfics D if and only if p is consistent and complete with
respect to D, .
Proof: (Only if) Let J = p(U) € saT(D). Since J € WEAK(D,p), p is consistent with D.

We claim also that p= pr){"‘(”}' Since p = wq(/), clearly Q (D'p){ﬂn(l)}gp.

Furthermore, for every /€ WEak(D,p), JCI, that is, pC wy(/), so pC 1€ ﬂo.p){u.(z )}

Therefore p is complete wrt D,

(If) Let p be consistent and complete with respect to /. Then T,', satisfies D by Theorem 3,
and p=wg(T,) by Theorem 5. Since R={U} and all dependencies are total, clearly
wa(Tp) = T, hence p = T, satisfies D. O

As a consequence of Theorems 3 and 4, the chase is a decision procedure for consistency and
completeness under full dependencies. In the rest of this section we shall give upper and lower
complexity bounds for these problems.

We first give NP-completencss results that follow from Theorem 6.

Theorem 7:

(1) For R={U}, testing whether a statc p is inconsistent with a typed egd or whether it is incom-
plete with respect to a jd is NP-complete.
(2) For R=(U}, testing whether a state p is not completc with respect to a set D of full depen-

dencics is NP-complete.
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53

e

g (3) Testing whether a state p is inconsistent with a set D of cgd’s is NP-complete.

Proof:

5.

}

; (1) In [MSY] it is shown that testing whether a relation violates a jd is NP-complete, and in
Eﬁ [BV3] it is shown that testing whether a relation violates a typed egd is NP-complete. The

, claim now follows by Theorem 6.

.‘ (2) The claim follows by the above mentioned NP-complctencss results in [BV3, MSY] and
X * Theorem 6.

(3) NP-hardness follows from the first claim; we have to show that the problem is in NP. To test
for inconsistency, one constructs T, and chases it by D. If at any stage the chase require
» ? identifying two constants, then p is inconsistent with D. By [BV3] chasing by cgd’s can be
done in nondeterministic polynomial time. O

) X We now refer to the general case and prove lower and upper exponential time bounds.

11 Theorem 8: Testing whether a state p is consistent with a set D of full dependencies is
' . EXPTIME-complete,

) Proof: As observed before, to test for inconsistency, one constructs 7 and chases it by D.
" If at any stage the chase require identifying two constants, then p is inconsistent with D. Other-
"” wise, it is consistent. An analysis of the chasc in [BV3] shows that it can be done in exponential
. time. It remains to show that the problem is EXPTIME-hard. We show it by reduction from the
; implication problem for full td's, which was shown in [CLLM] to be EXPTIME-complete. That is,
f ! given a set D of full td's and a full td d, we construct in polynomial time a sct D’ of full depen-
é dencies and a state p such that D [=d iff p is inconsistent with D’

By Let U be the relation scheme for the dependencics DUd. Let d be <T,w), with
; T={wy...,wy} Without loss of gencrality assumec that there arc at lcast two variables in 7.
To test whether D |ed, we chase 7 by D and see whether w is gencrated. The idea of the reduc-
EA) tion is to have a statc p that “looks like” 7 and a sct D’ of dependencics that simulate D and in
‘ addition force identification of two constants if w is gencrated. In order to do that we need to
A mark the tuples in the original state and the tuples that are generated by the chase. The marking is
x:,‘ done by cqualities satisfied by the tuples. For that we add new attributes; the databasc scheme is

R={U'}, where

U'sUU{A Ay . ... An BBy ..., By}

T T T e T T e T e
e N e SN, e e N e e N
VRPN o WP R L W A R oA P I i




- I Dol B Tt Ve Thugih up, S S i M i e MR i s

-18 -

Let a be a one-to-one valuation that maps the variables in T to constants. p(U’) has tuples
uy, . .., Uy that correspond to the tuples wy, . . ., wy, in T in the following way:

.% O  wlUl=alw),

=

s (2) u;[4] and u,{A;] are the same new constant, and

- (3) u; has distinct new constants elsewhere.

;:‘3 Note that, since R has a single relation scheme, T, is just p(U”).
2 .
Let now <S,v> be a full td in D." We construct a full td <S',v*> on U’ and put it in D’. For
‘ each tuple v; in S we have a tuple v'; in S’ defined as follows:
i M ViUl=v,

19 () v'; has distinct new variables elsewhere,

ke v' is defined as follows:

@ v[Ul=v, and

".1% (2) V'[A,A], ces ,A-]=V'[B.Bl, e .B,.]= VllB,Bl, sees B.].
h ’

For example, if <S,v is:

&) F G H

2

| N“

. v f g h

o v f & M

:' vy f 8l h

X )

vy 1 g &

-

- Then <S',v"> is:

13

!

'::‘

G
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X

i

‘ A A Ay A; B B, B, By F G H
v b b b2 b3 b b b2 b3 f g h

§ Y b b b2 b3 f g M

& S gl h

sy N g

ke (Dot represents variables with uniquc occurrences).

o In addition we put in D’ an egd <T"(a).a,)>, where a, and a, are two distinct variables from

:£ T. T’ has tuples w)’, ..., w,' . w' that correspond to wy, . . . . Wy, W.

W'l is defined as follows:
® wiUl=w,
(@ w'j[4] and w';[4] arc the same new variable, and

2N

(3) w'; has new distinct variables elsewhere,
* w’ is defined as follows:
1) wU)=w,and

. O 7

O AN

(2) w' has new distinct variables elscwhere.

For example, if <T',w> is:

"

MBS

ot ¢

w l:

Wz.'
vy

s
- e
%
P~

Then the constructed egd is <7",(f,f 1), where T" is:

<t M

.}
'{




B 4, 4, AJ._BI B, 83 F G H

hi

A
(Dot represents variables with unique occurrences).

To prove that D |=d iff p is inconsistent with D’ we show that a chase of T by D can be
simulated by a chase of T, by D' and vice versa.

Consider first a chase of T by D. We claim that for any tuple ¢ generated by a td <S,v> in a
chase of T by D, one can generate a tuple ¢’ by the td <S’,v"> in a chase of T, by D’ such that:
(1) 1U)=alt), and '

2) [A)%(14;) for 1<i<m.
We leave the verification of this claim to the reader. If D [=d, then w is generated by the chase of
T by D. Therefore, a chase of T, by D’ generates a tuple u such that u[U]=a(w). Let us now

apply the egd <T",(a,a,)> with a valuation 8 that maps w’; to 1; and w' to u. B agrees with a on
the variables of T, so we arc forced to identify a(a;) and a(a;). That means that p is inconsistent

with D',
N
) Consider now a chase of 7, by D’. We claim that for any tuplc ¢ generated by a td <S',v">
: in a chase of T by D', one can generatc a tuple ¢ by the td <S,v> in a chase of T by D such
i that:

(1) (TU}=alr), and
@ (A} 4] for 1<i<m.

We lcave the verification of this claim to the rcader. If p is inconsistent with D' then the cgd
<T'(a).a)> must be applied with some valuation 8. But since w',[A]=w";[4;], w'; cannot be

“:‘, mapped by 8 to any other tuple but ;. Thus B agrees with & on the variables of 7. In particular,
“E B(w){Ul=a(w). That is, w' must be mapped to a tuple « generated by the chase of ', such that
o u{U]=a(w). But then w is gencrated by a chase of T by D,s0 D =d.

‘ "’ To complete the proof we note that the reduction from D and d to p and D’ can be done in
gx polynomial time. O

3
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< Corollary 2: For R={U}, testing whether a state p is consistent with a set D of full depen-
_ dencies is EXPTIME-complete. O

3, The corollary should be contrasted with clause (2) of Theorem 7. While consistency is
t EXPTIME-co:nplete even for database schemes with a single relation scheme, for completencss
¥ there is a complexity gap between the case of database schemcs with a single relation scheme and
] the case of database schemes with two relation schemes,

2 Theorem 9: Testing whether a state p is complete with respect to a set D of full «d’s is
) EXPTIME-complete.

Proof: To test for incompleteness, one constructs T, and chases it by D. If at any stage a
% tuple ¢ is generated such that ¢[R;] has no variables and ([R;] is not in p(R;) for some of the rela-
§ tion schems R; in the database scheme R, then p is incomplete with respect D. Otherwise, it is

complete. An analysis of the chase in [BV3)] shows that it can be donc in exponential time. It
remains to show that the problem is EXPTIME-hard. We show it by reduction from the implica-
tion problem for full td’s which was shown in [CLM] to be EXPTIME-complete. That is, given a
set D of full td’s and a full td d, we construct in polynomial time a sct D' of full td’s and a state p

CAS S AcALAl

3

. such that D =4 iff p is incomplete with D',
Let U be the relation scheme for the dependencies DUd. Let 4 be <T,wd>, with
T={wy,...,wy}. Without loss of generality assume that w is not in T. To test whether D |=d,
we chase T by D and sec whether w is generated. The idea of the reduction is to have a state p

that “looks like” T and a set D' of dependencics that simulate D and in addition gencrate a “for-

o R ¢ A S ey

bidden” tuple if w is generated. Unlike the reduction in the proof of Theorem 8, we have to be

: careful not to generate “forbidden™ tuples too carly. For that we add new attributes: the database
- scheme is R={Ry,R,}, where Ry=UU{A4,B.4,,...,4,} and R,={C,D}. The ncw universe is
f U’'=R1UR;.
' Let & be a onc-to-one valuation that map the variables in 7 to constants. p(R,) has tuples
Uy, . .., Uy that correspond to the tuples wy, ..., w,, in T in the following way:
O wlUl=alw),
()  w,[A), w[B), and u;[A;] are the same ncw constant, and
(3) u; has distinct constants clsewhere.
’;:; p(R,) has a single tuple ug such that ug{C] and u,{P] arc the same new constant.
X
:
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In Tp, the tuples uy, ..., u, arc extended with distinct new variables for the attributes C
and D, and ug is extended with unique variables for all attributes other than C and D. The idea is
that for every tuple ¢ gencrated by a chase of T'p, ¢[4,] and ¢[D] arc variables, so no “forbidden”
tuple is generated until the very last step.

Let now <S,v> be a full td in D. We construct a full td <S',v> on U’ and put it in D’. For

each tuple v; in S we have a tuple v'; in S’ defined as follows:

O vi[Ul=vw,
(2) v';[A) and v';{B] arc the same ncw variable, and
(3) v’; has distinct new variables elscwhere.
In addition S' has a tuple v’y defined as follows:
(D v'C] and v'g[D] are the same new variable, and
(2) v'p has distinct new variables elsewhere.
Finally, v’ is defined as follows;
1) v[Ul=v,
Q) v[Ay....4)=vl4L ..., 4,)
(3) v'[A] and v'[B] are the same old variable (any variable from v will do), and
@ v[CD])=v4[CD).
For example, if <S,v> is:
F G H
vw f g h
vy f g K
vy f gl h
vy Sl g h
Then <S',v" is:

d




v'2:a5a5.....fglh
v'3:a6a6...._.ﬂgh

(Dot represents variables with unique occurrences).

In addition we put in D’ a full td <T’,w’>. T has tuples w'owy’, .. ., W, that correspond to

WWL .o, W

w'y is defined as follows:

1 wUl=w, and

(2) w'p has new distinct variables elsewhere.

w'; is defined as follows:

Q) w\[Ul=w,

@) w',[4] and w';[4;] arc the same new variable, and
(5) w'; has new distinct variables clsewhere.

Finally, w’ is defined as follows:

(1) w[U]l=w,and

@ w[4,B.Ay...,4,,C.D1=w'[4,B Ay, ..., An.C.D]

For example, if <T,w> is:

F G H
vw f 8 h
vy f 8 &
vy f gl h
vy N g h

Then <T'.w" is:

A AL 4 AL o Y Dy SR
b SIOTEC AT WS = 2o e oA I T e g L
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(Dot represents variables with unique occurrences).

To prove that D [=d iff p is incomplete with respect to D’ we show that a chase of T by D
can be simulated by a chase of T, by D’ and vice versa.

Consider first a chase of 7 by D. We claim that for any tuple ¢ generated by a td <S,v> in a
chase of T by D, one can generate a tuple ¢’ by the td <S',v"> in a chase of T, by D’ such that:
Q) (Wi=al),

(2) 174) and ¢'[B] are the same constant,
(3) (41} ....1744) tIC) and ('[D] are distinct variables.

We leave the verification of this claim to the reader. If D |=d, then w is generated by the
chase of T by D. Therefore, a chasc of T, by D’ gencrates a tuple « such that u[U]=a(w). Let
us now apply the td <7",w’> in the chase of T, with the valuation 8 that maps w'y to 4 and maps
w’; to 4;. This generates the tuple S(w’) with:

1) B(w)U)=a(w), and

@ BWYAB.Ay...,An.C.D}=ufA,B Ay ..., AnC.D)

It follows that B(w')R] consists solcly of constants and is not in p(R,), since w isnotin 7. So p
is incomplete with respect to D’

Consider now a chase of T, by D’. We claim that for any tuple ¢’ generated by a td <S".v">
in a chase of T, by D', one can generate a tuple ¢ by the td <S,v> in a chase of T by D such
that:

............
........
-------

......
.......
.......
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1) (Ul=a),

(2) ('[A] and 1'[B] arc the same constant, and *

(3) Al . ... [4,] ¢'[C), and ¢'[D] are distinct variables.

We leave the verification of this claim to the reader. If p is incomplete with respect D' then the td
<T',w"> must be applied with some valuation B. But, since w';[4]=w';[4;], w'; cannot be
mapped to any other tuple but »;. Thus 8 necessarily agrees with @ on the variables that are in T'.

In particular, 8(w ){U]=a(w), so w'o must be mapped to a tuple ¥ generated by the chase of T,
such that u[U]=a(w). But then w is generated by a chase of T by D, so D [=d. '

To complete the proof we note that the reduction from D and d to p and D’ is polynomial.

We note that in the proofs of Theorem 8 and 9 we have untyped dependencies in D' even if
the dependencies in D are typed. We believe that the exponcntial lower bounds for consistency
and completeness hold also for typed dependencies.

S. Testing Satisfaction under Embedded Dependencies

In the previous section, we restricted our attention to full dependencies in order to obtain
decidability results. In this scction we retumn to arbitrary sets of dependencies. Our main result will
be that both consistency and completeness are undecidable in this general sctting. To show this, we
will prove that consistency and completcness are recursively equivalent to certain dependency

implication problems which are known to be undecidable.

The first step is to reduce consistency to the implication problem of egd’s by a set of depen-
dencies. Let p be a state and D a set of arbitrary dependencies. Construct a set of egd's E, as fol-
lows. Let T = »(T)) be an isomorphic image of T, in which no constants appear. For every pair
of distinct constants ¢ and d in Ty, <7,(v(c),»(d))> is an clement of E,,.

Theorem 10: p is consistent with D if and only if for no cgd e € E,is it the casc that D = e,
Proof: Suppose p is consistent. Let 7 € wiAk(D,p). We can construct from » a homomor-

phism ¢ with 9(T)C 7 and for each constant ¢ of p, n(v(c)) = c. I certainly satisfies D, but it

violates cach cgd in E,. Therefore no elemeat of E,, is implic by D.

For the converse, supposc there is no e € Ep such that D = e. Let Ey={ey. ..., e} and
& =<T (v(c;)»(d;))>. Construct from T an atomic sentence + by letting 7 be the conjunction of

all sentences U(r) such that 1 is a tuple in 7". Now consider the sentence d given by
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Ax@EAw(c)r(d)A - -+ Arler)2u(dr)),

where x is a sequence of all the variables in T. We claim that D' = D U d is finitely satisfiable.
Suppose not; then D | —d. Now —4 is a disjunctive egd of the form

Y x(r— V(C1)='(d1)V s Vl(t‘k)= r(dk)).

We now rely on a finite version of a theorem of McKinsey [McK] due to Graham and Vardi [GV]
to conclude that for some 1<i<k, D F Y x(7—=»(c;)=»(d), that is, D [ ¢, contradicting our
mmptioﬁ that D does not imply e for any e € E,,

Since D' is finitely satisfiable, it has a finitec model M. Let s(c) be the domain élement
assigned to each variable »(c) of d to make d true in M. Note that s(c;)# s(d;) for every ¢;, d;
appearing in an inequality in d, so we can assume without loss of generality that s(c)=c. Then
M(U) is a weak instance for p, showing that p is consistent. O

We now reduce the implication problem for egd’s to the consistency problem. Let D be any
set of dependencies and let e = <7',(a,b)> be an egd. We form thc";;t R, of states of the universal ) u
scheme {U} as follows. For each mapping » from the symbols of 7 to constants such that
»(a)#v(b), »(T) is a member of R,.

Theorem 11: D = e if and only if no state in R, is consistent with D.

Proof: Suppose D [ e, and let #(T) be any state in R,. Clearly »(T') violates e. Any weak
instance in WEAK(D ,»(T)) must satisfy D, and hence e. But #(T) would have to be a subset of such
a weak instance, which is impossible. Hence no such weak instance exists and #(T’) is inconsistent
with D.

For the converse, suppose D does not imply e. Let / be any rclation that satisfies D but not
e. Such a relation must contain a2 homomorphic image #(T") of T, such that »(a)#»(b). Hence [ is
a weak instance for »(7"), which is an clement of R,. O

From the last two theorems we obtain the following immediate corollary, relating the decida-
bility of the membership problem for an egd from a set of dependencics and the decidability of
consistency under that set of dependencies.

Corollary 3: Let D be a sct of dependencies. Let D, be the sct of egd’s implied by D. The
following are equivalent.
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T (a) D, is recursive,
. (b) For every database scheme R over the universe on which D is defined, the consistency of

every state of R is decidable.

(c) The consistency of cvery state of the universal scheme of D is decidable.

Proof: (a) implics (b) follows from Theorem 10; (b) implies (c) is immediate; (c) implics (a)
) follows from Theorem 11. O '

The development of the last two theorems can be repeated to relate completeﬁess to td impli-
cation. For the analogue to Theorem 10 construct a set of cxponentially many td’s, G, from a state
p. Elements of G, are of the form <T',w>, where T is the image of T, under an injection » to vari-
ables, and w is constructed as follows. Let R; be a relation scheme in the given database scheme,
and let ¢ be a tuple on R; such that ¢ consists of constants taken from p but ¢€p(R;). Then

w[R;]=»(1) and the rest of w consists of distinct new variables. Informally, each element <7",w>

of G, says that a containing instance for p must contain a tuple w such that its projection on some

relation scheme is not in p. Note that G, is a set of embedded td's.

Theorem 12: p is complete with respect to D if and only if for no element g € G, is it the

, case that D = g.

'ji - Proof: If there is some g =<T',w>€ G, such that D [ g, then let R be the relation scheme
" that led to include g in G,. There is some tuple ¢ constructed with values from p that docs not
appear in p(R). By property (3) of D, we know that if D |= g then D [ g. Let I be an clement
; of WEAK(D ,p). Since 7 satisfies D, it satisfies g. Let u be a valuation such that mT,C 1. Since
‘:2 T is the image of T, under an injection » and / satisfies g, / must contain some tuple whose pro-
jection on R is 7. It follows that 1 € Ier‘(b“p){er(l )}, so p is incomplete.

4 For the converse, suppose that no g € G, is implicd by D. By property (3) of D,nog€ G,
'_:g is implied by D. Thus, for cvery g € G p. there is a universal relation /, such that /; satisfics D but
not g. Let g =<T,w> and lct ¢ be the tuple on relation scheme R that led to the inclusion of g in
1 Gp- There is a valuation » such that »(T)C /; and »(w[R]) € wg([,). By the multiple copics con-
: struction of Theorem 2, we can assume that » is injective. Thus we can assume without loss of gen-
. erality that 7, € WEAK(D.p), and 1 € wg(I,). It follows that ( € p*(R). Since this is truc for every

tuple ¢ constructed from valucs in p but not itsclf in p(R), it follows that p is complete. G

For the analoguc of Theorem 11, let D be a set of dependencies and g =<7, w> a td. We

may assume w€T, clse g is trivial. Let U be the relation scheme of DUg, let

TP AEA
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Er R={A | w[A] occurs in T}, and let R={U,R}. Let » be an injection from variables of T to con-

- stants. Let S be the set of all relations on U constructed from values in #(T°) that contain »(T’).

cs Let K be the set of all states of the form wg(r), where 7 € S and wz(r) does not contain »(w).

f f Theorem 13: D [= g if and only if every state of X is incomplete.

y Proof: Again the proof parallels that of Theorem 11. If D = g, then the completion ¢ * of o

‘_ for each ¢ € KX is such that »(w)[R] € o *(R), but »(w)€ o(R), hence every such o is incomplete.

f;q Conversely, if D does not imply g, let / be a relation on U that satisfies D but not g. / is a

'J: weak instance for the state o = wg(/) in K. Since o is exactly the projection of one of its weak

! instances, it must be complete. O

é} . Corollary 4: Let D, be the sct of all td’s implied by a set of dependencies D. D, is recursive
,‘ if and only if completeness of any state of any databasc scheme over the attributes of D is decid-

1 able.O

,‘j We now state the main result of this section, which is a corollary of the four theorems above.

‘3 | Theorem 14: There does not exist an algorithm which will determine for every pair <D,p>

l‘ whether p is consistent nor whether p is complete with respect to D.

A , l Proof: The implication problem of egd’s from arbitrary dependencies was shown undecidable

_. by Vardi [Val). Implication of td’s was shown undecidable by Vardi [Va3] and Gurevich and Lewis

¥ [GL] O

e Since no general algorithms cxist for deciding either completcness or consistcn.cy, we become

; } interested in solvable subcases. If implication is decidable for D, for example, if D contains only

H :. full dependencics, consistency and completencss are decidable, as shown in the previous section.

i But there may be specific database schemes for which consistency and completeness are decidable,

; even if implication is not. However, there is no algorithm that will decide, given a database scheme
¥, and a sct of depcndencies, whether consistency and completencss are decidable for that scheme and

3 those dependencies.

, ;‘ Theorem 15: The set A = {<D,R>| consistency and completeness of states of R with respect

‘”ﬁ 10 D are decidable } is not recursive,

i ;t‘ Proof: Vardi [Va2] showed that it is undecidable whether the implication problem for a set
of dependencics D is decidable or not. Suppose A4 were recursive. For a fixed sct of dependencies

”s‘; D, the predicate of these dependencics has a fixed arity, that is, a fixed sct of attributes. There are

';j only finitely many database schemes over this set of attributes. As implication is decidable for D if
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and only if <D,R>€ 4 for each of these finitely many R’s, an algorithm for membership in A
would yield an algorithm to test decidability of the implication problem. So A cannot bc recursive.
|8}

6. Discarding the Universal Relation Scheme

The sentences in Cp and X, use a predicate letter corresponding to the universal relation
scheme for the database. It is interesting to ask whether we can construct a theory with properties
smﬂar to Theorems 4 and 5, but using only predicate symbols Ry, .. ., R, of the same arities and
sorts as the relation schemes, thus avoiding the universal predicate. This amounts to asking
whether dependency satisfaction can be expressed in a “local” way, without having to resort to the

existence of a universal relation.

There is a special case, the independent schemes, when the question can clearly be answered
in the affirmative. Given a set of dependencies D on a database scheme {R,, ..., R,}, the pro-
Jjected dependencies D; are all the dependencics that must hold in any rclation ; on R; such that

ri=wg(r), where r is a universal relation satisfying D. A state p is called locally satisfying if every

p(R;) satisfics D;. A database scheme is said to be independent if every locally satisfying state is
consistent with D. When the database scheme is independent, we can write down the required set
of sentences by expressing cach dependency in the context of some R;. For special cases such as
functional and multivalued dependencics. projected dependencies can be easily characterized in
terms of the original sct D, although finding the D;’s is computationally hard [H]. For more general
classes of dependencies, we do not even know if the D;’s are finite. In the general case, the results
in this section should be viewed as existence proofs for the desired scts of sentences, rather than

effective constructions.

Our main result in this section is that in fact it is possible to construct a set of sentences with
the desired properties when the database scheme is weakly cover embedding. To define this notion,
note that the projected dependencies D; can be viewed as embedded dependencies on U. For D;

defined on R;, we say a relation on U satisfies D; if nR,(l ) does. We say that a database scheme R

n
weakly cover embeds a sct of dependencics D if any state of R consistent with | D; is consistent
i=1

with D. In the framework of Section 4, in a weakly cover embedding scheme it suffices to chase

using only dependencics local to some relation scheme of R.
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N It is easy to see that the class of weakly cover embedding schemes contains both the cover

embedding or dependency preserving schemes [MMSU] and the independent schemes. Since, for

; n

& cover embedding schemes, we have |_J D; k= D, such schemes are weakly cover embedding. Since

& i=1

Y n

R any state consistent with | ) D; is locally consistent, the independent schemes are weakly cover

i=1

. embedding. A polynomial time algorithm for testing whether a weakly cover embedding database
! scheme is independent, in the case where all dependencies are fd’s, is given in [GY]. Even for this
e restricted case, no algorithm to test whether a scheme is weakly cover embedding is known.

N Given a state p of a weakly cover embedding database scheme, we construct a new set of sen-

p tences B, as follows. The language of B, is the same as the language of A, except that we do not
j use the universal predicate letter U. B, contains four kinds of sentences.

o State axioms: for each R; and each tuple 1€p(R,), the sentence R;(¢).

X1

! : o Join-consistency axioms: for each R; in the database scheme, B, contains the sentence

] :
d ,

;X Y X(Rﬁ") -"(3 b] e meRI('l)A e ARn(‘n)»

Y where v;=x and the v’s are constructed from values in x and the b’s so that for all

E 1<p.q<n, if the jth attribute of R, is the kth attribute of R, then v [j]=v,[k]. Intui-

5‘,: tively, the join-consistency axioms, together with the state containment axioms, assert the

existence of a join-consistent state that contains p.

) o Dependencies: for each i, the set of dependencies D; can be rewritten as a set of first order

! } sentences on R;.

- o Distinctness axioms: as before, these assert that all constants are distinct.

Example 5: We construct B, for the state of Examples 1 and 4. The universe is
U = {S,C,R,H}, the relation schemes R, = SC, R, = CRH, R;= SRH, and the dependencics

T

3 SH-»R, RH~C. ‘The projected dependencics are: D=8, D,={RH=C}, Dy={SH—R}.
P State axioms:
3
1 R (Jack,CS378)
':é
| RACS378,B215,M10)
RACS378,B213,W10)
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Ry(Jack ,B215,M 10)

Join-consistency axioms:
(Vx 10 R y(x)x)=*(3 516X R A x251bINR o x15157)))
(Yxyx203(R o x1x2x3)*(3 5. XR (b1 x PAR 3(b) x2.X3)))

(Yx) 2223 R (123> (Q H1NR (x5 PAR A(b1 x2.x3)))

Dependencies:
(VrlhlclchR;(clrlh ])/\R 2(0271’! |)"’ a= Cz)

(VSU]')’!}XR 3(81"1’! l)’\k 3(511'2'1 1)"’ n= rz)

Distinctness axioms:
B215#B213
M10=W10

etc.

Theorem 16: For a weakly cover embedding database scheme, B, is finitely satisfiable if and
only if p is consistent with D.

Proof: (If) Suppose p is consistent, and let / EWEAK(D,p). Let 7, =w (/) for each i. Con-
sider the interpretation for B, where cach constant is mappped to itself and R; is interpreted as 7,
for cach i By definition of projected dependencics, each r; satisfies ;. Since / is a containing
instance for p, the r;’s satisfy the state containment axioms. Finally, the r;’s are join-consistent by
construction and thus satisfy the join-consistency axioms. It follows that we have a finite model for
B,

(Only if) Supposc B, is finitely satisfiable. Procceding as in Theorem 1, we can assume that
there is a database state p’ that satisfics B,. That is, p' contains p, is join consistent, and p'(R)
satisfics D; for cach i. let/ bea universal relation such that wr(l)=p". Clearly I satisfics the
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Dy’s, so TEWEAK(|J D;,p"), showing that p' is consistent with |J D;. Since R is wcakly cover
i 1

embedding, p’ is also consistent with D. Since pCp’, WEAK(D,p") CWEAK(D,p), so p is consistent

D)
2alalsts

X with D. O
3 The following example shows that the construction above does not generalize to non-cover
- embedding schemes; we leave open the question of whether such a set of sentences can be con-
-:'.:2 structed at all for arbitrary schemes.
1' Example 6: Let R={AC,BC}, D={AB—C,C—B}, p(4AC)={K0D><02},
W p(BC)={<31><32>}. Note that D=9, D,;={C—B}. It is easy to see that p is consistent with
Py Dy D, but not consistent with D. However, By, is consistent in this example, since p ié a join-
3‘3 consistent state that satisfies the local dependencies and hence provides a model for B,.
7. Discussion
:3' We have pointed out that there are two scparate sides to the smndmd notion of dependency
E satisfaction: consistency and completencss. We view consistency as corresponding to a “lazy evalua-
< tion™ tactic for constraint maintenance. As long as no violations can be proven, the state is con-
.;.» sidered legal. The derived tuples not present in the state can be generated on demand, for purposes
é‘; such as query answering. Notc the similarity of this policy to the “deductive databases” approach
:,:, [GM), where any fact deducible from the stored relations is considered part of the database.
) Requiring both consistency and completencss corrcsponds to a constraint maintenance policy that
':‘ 3 guarantecs that all derived tuples will be present in the databasc at all times. There is a storage-
\ computation tradeoff in the choice of a policy. This tradeoff applies not only to multi-relation data-
bases but also to single relations. Consistency of a relation under a set of, say, fd’s and mvd’s, is
o strictly weaker than standard satisfaction.
.5,: The combination of our notions of satisfaction with the concept of independence leads to
-1 intercsting questions. For example, what arc the database schemes such that every locally consistent
- state is consistent and complcte? Chan and Mendelzon [CM] have characterized these schemes
f when the join dependency for the database scheme and a set of functional dependencies are given.
%
%
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